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Abstract: Mapping agricultural fields using high-resolution satellite imagery and deep
learning (DL) models has advanced significantly, even in regions with small, irregularly
shaped fields. However, effective DL models often require large, expensive labeled datasets,
which are typically limited to specific years or regions. This restricts the ability to create
annual maps needed for agricultural monitoring, as changes in farming practices and
environmental conditions cause domain shifts between years and locations. To address this,
we focused on improving model generalization without relying on yearly labels through a
holistic approach that integrates several techniques, including an area-based loss function,
Tversky-focal loss (TFL), data augmentation, and the use of regularization techniques like
dropout. Photometric augmentations helped encode invariance to brightness changes but
also increased the incidence of false positives. The best results were achieved by combining
photometric augmentation, TFL, and Monte Carlo dropout, although dropout alone led
to more false negatives. Input normalization also played a key role, with the best results
obtained when normalization statistics were calculated locally (per chip) across all bands.
Our U-Net-based workflow successfully generated multi-year crop maps over large areas,
outperforming the base model without photometric augmentation or MC-dropout by
17 IoU points.

Keywords: remote sensing; deep learning; semantic segmentation; cropland

1. Introduction
The ability to produce precise, field-level maps of agricultural land is crucial for

understanding and managing the complex interplay between food security, land use,
and environmental sustainability [1]. These maps are key to understanding farmland
configurations, including the spatial distribution, quantity, morphology, and dimensions of
fields, which serve as key indicators in domains such as land management [2], ecosystem
monitoring [3,4], food security [5,6], and precision agriculture [7,8].
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The growing need for extensive, routine, and automated mapping of crop fields is
driven by the rapid evolution of global agricultural systems and food security challenges
in the face of climate change. This need is especially pressing in smallholder-dominated
regions of Asia and Africa, where landscapes are typically characterized by small (less than
1–2 hectares), geometrically irregular, and dynamically changing fields, often featuring
heterogeneous management practices and frequent presence of trees within the fields [9–11].

Available global- or continental-scale cropland maps are typically coarse in resolution
and produced infrequently with poor or unverified accuracy (e.g., the global data set of
monthly irrigated and rainfed crop areas around the year 2000 (MIRCA2000); the Global
Rain-fed, Irrigated, and Paddy Croplands (GRIPC) [12] while frequent large-scale products
are usually limited to developed countries (e.g., the U.S. Cropland Data Layer (CDL)
or Canadian Annual Crop Inventory [13]. The Global Food Security-support Analysis
Data (GFSAD) project’s products, including the Landsat-derived Global Rainfed and
Irrigated-Area Product (LGRIP30) and the Landsat-derived global cropland extent product
(LGCEP30), partially address some limitations in cropland data, such as imprecise spatial
locations and uncertainties in differentiating irrigated and rainfed areas. Another exception
is the newly available LULC product from Dynamic World [14], with 10 m resolution and
near-real-time global coverage, but the resolution of these products is still too coarse to
map many cultivated areas dominated by smallholder agricultural systems.

In the context of smallholder agricultural regimes, key advances in cropland mask
generation have arisen from the use of high-spatial-resolution imagery (<5 m), particularly
when paired with improved revisit frequency [15]. Although the use of unsupervised
methods is increasing, prompted in part by the promising results from emerging foundation
models, which eliminate the necessity of annotated datasets in the training process, such
as Prithvi [16] and Presto [17], supervised learning techniques still dominate the majority
of research in this area. In addition to precisely identifying and mapping the locations of
cultivated pixels, there is an increasing emphasis on models that can accurately delineate
the geometric contours of agricultural fields, to capture their shapes and sizes, which
provides crucial information on agricultural systems while enhancing the overall accuracy
of the mapping process [18–20].

Typically, any DL model optimized for object detection or semantic segmentation
can be adopted and modified for the aim of crop extent mapping. Examples include
DeepLabv3+ [21], specifically designed models such as ResUNet-a [22] and HRRS-U-
Net [23], and ensemble models like CCTNet [24]. A popular approach used to improve
segmentation masks is multi-task training, where the delineation of field boundaries
serves as an auxiliary task to aid the primary segmentation goal, commonly designed as a
multi-branch network with task-specific branches and strategic fusion methodologies to
improve the crop mask [25–29]. Complementing these methods, implementing boundary-
aware loss functions has proven to be an effective strategy in refining the accuracy of
field boundary detection [30]. Alternative strategies focused on field boundary delineation
commonly follow a two-step process involving semantic segmentation followed by instance
segmentation post-processing, as exemplified by the ultrametric contour map (UCM)
approach [31]. End-to-end instance segmentation strategies, such as E2EVAP [32], and
region-based CNNs, such as mask-R-CNN [33], are also used for this purpose.

Despite the promising capabilities of DL models in classifying croplands and delineat-
ing fields, consistently achieving high performance across extensive spatial and temporal
scales remains a significant challenge. Notably, these models often necessitate extensive
training datasets with representative samples to ensure accuracy [34,35], a requirement
that is difficult to meet in smallholder systems where ground or census data are sparse or
unavailable due to collection costs and other resource constraints [15,36]. Moreover, the
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temporal specificity of samples needed to classify seasonal crops means that, even if they
are available, they are typically relevant only for the current season, thereby increasing the
cost and complexity of annual crop mapping [5,37]. To address these challenges, there is a
growing emphasis on reusing historical samples, either from different years or geographic
locations, by employing knowledge transfer strategies to mitigate the effects of domain
shift [38–41].

Domain shift in the context of agricultural mapping can be roughly categorized into
two types: temporal and geographical. Temporal domain shift usually involves changes in
the marginal distribution of brightness values for each band in the input samples from the
source year (e.g., training year) to the target years (i.e., covariate shift) [42]. Such spectral
discrepancies arising over time within the same geographic location can be attributed to a
variety of factors, including year-to-year variations in agricultural practices, such as crop
rotation, intercropping, and changes in crop species. Environmental changes also play
a role, such as fluctuations in soil moisture levels and weather patterns and even subtle
shifts in atmospheric conditions, by altering the spectral signatures of the land. These
shifts lead to compromised prediction quality from one year to the next, particularly when
gathering images from the same season in different years is not an option, e.g., due to
cloud occlusion [31]. Geographical domain shift, on the other hand, occurs when models
developed and trained in one geographic region are applied to a different region, which,
besides covariate shift, can also lead to a shift resulting from the label space differing
between the source and target domains [42]. This type of shift is driven by changes in the
dominant landscape features and their configuration, as well as regional differences in
agricultural practices, which are often influenced by local agronomic, climatic, and cultural
factors. Additionally, inherent environmental variations between regions, such as soil
types, climate conditions, and regional atmospheric and illumination characteristics, lead
to distinct spectral signatures.

In this manuscript, we focus on addressing the challenges that the temporal domain
shift poses to maintaining model accuracy and on improving the ability to reuse historical
samples within the same geographic area. Our goal was to improve the ability to develop
reliable, annual, high-resolution maps of cropland characteristics at regional to national
scales. Research on temporal generalization and the reuse of historical data in cropland
mapping has been relatively limited. The majority of existing studies adopt a pixel-based
approach, relying on time-series data and typically focusing on crop-type mapping, often
using conventional machine learning algorithms [37,43]. In cross-year crop mapping,
common practices involve the use of measures of spectral similarity between source and
target years and incorporating domain knowledge to provide contextual understanding.
Both approaches are based on the premise that, despite year-to-year variations, certain
spectral characteristics remain consistent and can be used to identify similar crop pixels
across different years. Techniques such as spectral angle distance (SAD) [44] and Euclidean
distance (ED) metrics are examples of this approach, as used in one study [45] to enhance
global land cover mapping accuracy. Another study [46] used temporal features derived
from domain knowledge of the crop growth cycle profiles and their spectral characteristics
to improve the accuracy of crop-type classification and mapping across different years. A
related approach used the local similarity between time-series spectral feature vectors from
historical and target year samples as a basis for creating transferable training datasets [47].
Ref. [48] used a mixture of temporal and geographical domain adaptation by applying a
phenological matching technique to adapt a U-Net, initially trained on rice and corn fields
in the south-central US, for mapping these crops in the midwestern US and Northeast China.
While these temporal generalization methods have shown promise, they typically require
time-series data and extensive domain knowledge. To create a binary cropland mask,
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however, mono-temporal imagery is often sufficient, which eliminates the need for complex
time-series analysis while minimizing the computational burden. These limitations have
prompted us to seek alternative strategies to enhance model generalization, using a similar
rationale to that of [15], who used a task-specific model called FracTAL-ResUNet [49]
to improve generalization while relying on weak supervision using imperfect labels to
overcome the barrier of annotation scarcity.

To improve generalization, the different aspects of a pipeline, such as data pre-
processing, model architecture, loss function, optimization, and regularization techniques,
play an important role. Given the lack of time-series input for phenological mapping and
the desire to develop a strategy that can be plugged into any supervised segmentation
pipelines, we mainly emphasize input pre-processing and regularization techniques.

Input normalization is a standard pre-processing procedure in DL models, intended
to standardize input features’ magnitude to enhance training. Common normalization
methods include z-value standardization and min–max normalization, typically applied
per band across the entire training dataset [50,51]. Since the input only interacts with
the weights of the initial network layer, the impact of input normalization on model
generalization has not yet been fully explored [52], and many research papers fail to
adequately document the procedure, while only a few studies have directly addressed
the effects of normalization on model output and generalizability. Pelletier et al. [53]
investigated various normalization methods for time-series data in remote sensing. They
observed that the z-value, calculated per time stamp or for the entire time series, could
distort temporal profiles and obscure vegetation differences. To counter these limitations,
they proposed a global feature min/max normalization using the 2% and 98% percentiles,
which better preserved temporal profile shapes. There have also been attempts to remove
local trends. For instance, Nguyen et al. [54] used patches of the Landsat 8 time series,
normalized by mean-centering each band based on the pixel values for each local tile, to
map paddy fields at the pixel level.

Image augmentation is another standard procedure used to increase the training
dataset by creating new samples through the transformation of the original samples. This
procedure can also act as a regularizer by increasing the variability of the dataset. Many
transformations have been introduced in the literature, ranging from weak spatial transfor-
mations, such as cropping, uniform scaling, and different types of flip and rotation that
preserve the topology of the image, through to stronger transformations that do not pre-
serve topology, including image erasing and mixing strategies. There are also photometric
augmentations that act on the brightness values of each pixel to make the model invariant
to color and contrast changes, forcing it to rely more on shape clues rather than spectral
information [55]. This form of augmentation may be particularly effective for improving
temporal generalizability, as variability in illumination is a large source of domain shift [56].

Dropout [57] works by temporarily disabling some neurons in a network layer during
training and is determined using a rate that specifies the probability of an individual neuron
being deactivated. This approach reduces certain pathways’ dominance and prevents co-
adaptation among neurons, acting as a regularizer that decreases overfitting and simplifies
the network structure, which has been found to be particularly useful in deep neural
networks (DNNs) that have dense layers with numerous parameters or smaller training
datasets [58]. However, it may not be ideal for convolutional neural networks (CNNs),
in which maintaining the spatial structure of the input is crucial, and applying standard
dropout can disrupt spatial coherence due to its random deactivation of individual neurons.
Spatial Dropout [59] addresses this by deactivating entire feature maps from the output
of the previous layer, thus preserving the spatial coherence of the network’s activations.
As a regularizer, dropout is applied exclusively during training, with all neurons being



Remote Sens. 2025, 17, 474 5 of 29

active during inference (or the model’s evaluation phase). The dropout concept inspired
several adaptations for different purposes. Monte Carlo dropout [60], a Bayesian method
for variational inference, employs dropout layers not only during training but also during
inference to approximate the uncertainty in model predictions [61]. By using dropout
during inference, multiple predictions are made with varying network configurations,
leading to a distribution of outputs. These outputs are then aggregated (by averaging
or majority voting) to provide a robust prediction and an uncertainty measure, which is
typically the class-wise standard deviation of these predictions [62]. Kendall and Gal [63]
distinguish between two main types of uncertainty: aleatoric, inherent in data due to
noise; and epistemic, stemming from limitations in a model’s learned knowledge due to
limited training samples. Dechesne et al. [64] applied these concepts in a practical setting
by developing a compound metric that merged the entropy of prediction distribution with
the mutual information between the prediction and posterior over the network weights.
This metric effectively assessed both aleatoric and epistemic uncertainties, which the
authors used along with the prediction–reference agreement to create qualification maps for
analyzing network decisions in tasks such as extracting building footprints from benchmark
datasets. MC-dropout has been used to quantify the uncertainty of DL models [65] and to
increase prediction robustness by improving model repeatability [66].

In this study, we introduce a novel workflow that leverages input normalization,
Monte Carlo dropout (MC-dropout), and a task-specific loss function to enhance the
temporal generalization capabilities of field boundary masks at a national scale. We applied
these techniques to a single U-Net model as it is well-understood and widely deployed
for LULC mapping [67,68], making this study highly relevant to practitioners whose goal
is to repeatedly produce reliable maps with an effective model, and who may lack the
time to test the broad and expanding array of architectural variations. Our focus was to
enhance our ability to produce yearly cropland masks for annual crops, excluding woody
crops, aligning with common practices in the literature [69,70]. The cropland masks are
particularly designed to distinguish between the field interior, field edge, and non-field
background classes, which improves the ability to perform post-hoc instance segmentation
using the score maps for the field interior class. The approach we demonstrate here
significantly reduces the reliance on extensive multi-year sample collection, or complex
transfer learning strategies, marking a meaningful improvement toward cost-effective,
large-scale, and annually repeatable agricultural monitoring.

2. Materials and Methods
2.1. Data and Study Area

The focal region of our study was Ghana (240,000 km2), which has a diverse agricul-
tural landscape ranging from primarily rain-fed cereal cropping in the northern savanna
regions to tree-crop-dominated areas in the humid forests of the southwest [71]. Agri-
cultural fields in Ghana are typically small, averaging less than 2 hectares in size, and
characterized by heterogeneous and often indistinct field patterns [11,31]. Moreover, shift-
ing agriculture is a common practice in this region [72]. These agronomic factors, along
with the frequent cloud cover, pose significant challenges in producing multi-year cropland
maps of Ghana.

For the creation of annual cropland maps spanning the years 2018–2022, we used
high-resolution (3.7–4.8 m) imagery derived from daily PlanetScope imagery. These images
have four bands spanning the visible and NIR spectra and were compiled using two distinct
methodologies. Initially, for the year 2018, a weighted temporal averaging approach was
adopted to integrate daily imagery from November or December 2018 through February
2019 into a dry season temporal composite, as detailed in [11]. These composites were



Remote Sens. 2025, 17, 474 6 of 29

structured within tiles of 2000 × 2000 pixels (0.05◦ × 0.05◦ degree, n = 8116), each with
an approximate resolution of 3 m (0.000025◦). For the subsequent years of 2019 to 2022,
we used Planet analytic base map imagery provided by Norway’s Climate and Forests
Initiative (NICFI (URL https://www.nicfi.no/)) at a resolution of 4.77 m, which is made
from the best image during the time period (typically one month for 2020 onwards, and
6 months for earlier years), based on the cloud coverage and image quality using Planet’s
“best-on-top” algorithm. The collection of base map mosaics covered the period from
June to December 2019, as well as each November for the years 2020, 2021, and 2022. To
ensure consistency across all years, these base maps were resampled to match the tiling
grid and resolution used for the 2018 imagery. Additionally, to minimize boundary effects
during the prediction phase, tiles were reprocessed to overlap, such that input dimensions
are 2358 × 2358 pixels, with final predictions cropped to the original non-overlapping
2000 × 2000.

To train our cropland mapping model, we assembled a set of 4977 labeled images
developed through manual digitization of field boundaries in the 2018 imagery, primarily
as part of a prior mapping initiative [11]. This dataset includes 4229 labeled samples
encompassing four different areas across the Ghanaian landscape, where annual crops such
as maize are primarily produced. The dataset was further enriched with an additional
100 samples from Nigeria, 70 samples from Congo, and 578 samples from Tanzania derived
from a similar procedure in 2020 to broaden the range of agronomic diversity. The samples
were divided into 4781 samples for training, with the remaining 196 (4%) with the highest
label quality reserved for model validation in 2018 (Figure 1).
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Figure 1. The spatial distribution of training (red) and validation datasets (blue) sampled in south-
southwest Africa.

Label polygons were converted into 200 × 200 pixel masks that distinguished between
field interiors, field boundaries, and non-field areas, aligned with the dimensions of a 0.005◦

labeling grid. The delineation of class boundaries from the labels was executed by creating
buffers around the boundaries of the original geometries with a thickness of 2 pixels.

To align with the corresponding PlanetScope-derived image chips of 224 × 224 pixels,
another buffering procedure with constant values was implemented, extending the dimen-
sions of the labels. This adjustment ensured a harmonized input to the model, accommo-
dating the 32× downsampling factor of our encoder–decoder model, but the buffered area
was masked out of the loss calculation during the training. It is noteworthy that the labels
are relatively sparse, with few sample chips having more than 50% field pixels and around
20% negative chips with no crop fields (Figure 2).

https://www.nicfi.no/
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2.2. Method

We developed a methodology for national-scale mapping of agricultural fields using
historical samples and integrating techniques to enhance temporal generalization, in order
to eliminate the need for extensive annual data collection. Central to these techniques is
the choice to use input normalization and photometric augmentation, which were selected
based on their ability to improve the model’s generalization capabilities.

In our normalization process, we evaluated the popular min–max normalization and
z-value standardization, applying these techniques across four distinct combinations to
compute the necessary statistics, taking into account both the locality of the data and the
spectral bands involved. Specifically, we calculated the statistics for each chip locally across
all bands (local tile across all bands, lab); for the entire dataset across all bands (global
across all bands, gab); for each chip on a per-band basis (local tile per band, lpb); and for
the entire dataset on a per-band basis (global per band, gpb) and investigated their effects
on model performance.

To further bolster the model’s resilience against overfitting, and to enhance its adapt-
ability to varying crop patterns, image reflectance artifacts, and domain shift, we expanded
our training dataset with a combination of spatial and photometric transformations, thereby
augmenting data diversity and robustness. The augmentations were applied on-the-fly
with a 50% chance of occurrence, with the following order: flip, rotation between ±90◦,
uniform resize, and photometric transformations. Flip was randomly selected from one of
the horizontal, vertical, or diagonal types, and for photometric augmentation, one option
out of gamma correction, Gaussian noise, additive, and multiplicative noise was randomly
selected with equal probability and applied in each epoch. We used flip, rotation, and resize
to increase the input diversity and make the model invariant to size and orientation [73],
as these properties are arbitrary and can vary substantially for crop fields, but given their
existing widespread and standard use [15,25], we did not further analyze their effects on
the model performance.

We adopted U-Net [74] for our model, chosen for its simplicity, straightforward
implementation, and reliability of predictions in land-cover mapping [75–77]. Our U-
Net variation employs a VGG-like architecture [78] with 12 convolutional layers and
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a 32× downsampling factor, producing feature outputs at each encoder stage of 64, 128,
256, 512, 1024, and 2048. This design strategically emphasizes the network’s width over
its depth to increase the model’s capacity, accommodating the limited label dimensions
of 200 × 200 pixels, thus optimizing for our specific data constraints (see Appendix A,
Figure A1).

After experimenting with conventional and spatial dropout and different configura-
tions for placing the dropout layer, we decided to use spatial dropout to regularize the
model and added it to each convolution block in both the encoder and decoder subnetworks
of the U-Net. We further applied MC-dropout [60] to make model prediction ensembles,
which, besides providing an uncertainty measure, improved the model’s generalization
power and robustness. Through experimentation, we set the number of MC trials to 10 and
used a fixed dropout rate of 0.15 for the training phase and 0.1 for the inference phase.

As the output probability maps show significant variation between tiles and time
points, we used the class masks to find the optimal threshold for hardening the probability
maps. We iterated though a range of potential threshold values and evaluated the difference
between the number of field and background pixels at each threshold, seeking to maximize
this difference. We also set a condition that the background count must not exceed 10% of
the total field class count. This approach helped to establish a balance between maximizing
TP while keeping the FP within acceptable limits.

To refine the training of our model, we adopted several strategies. We employed focal
Tversky loss [79], developed for segmentation tasks and known for its efficacy in handling
imbalanced datasets and small object sizes. The process included setting a weighting
scheme (α and β hyperparameters) that controlled the trade-off between false positives (FP)
and false negatives (FN), as well as a focal hyperparameter (γ), which controls the model’s
focus on hard-to-classify examples. We experimentally set the α and γ hyperparameters to
0.65 and 0.9, respectively, optimizing the model’s ability to learn from challenging cases and
reducing the impact of easy negatives. We implemented a dynamic class-weighting scheme,
based on an inverse frequentist approach, where weights are calculated on-the-fly for each
class within a given input batch, as opposed to static weighting for the entire dataset.
Furthermore, introducing object boundaries as a distinct class provided a straightforward
yet effective technique to enhance the model’s ability to delineate individual fields. While
these boundary delineations proved useful during training for field separation, they are
excluded from the final predicted field mask, which has been previously shown to be
effective [80].

We developed our pipeline using the PyTorch 1.9.0 library and trained our large
network (157 M parameters) on an A30 GPU machine for 120 epochs with a batch size of
32. After running initial experiments on SGD, SGD with momentum, Nesterov, Adam,
and Sharpness-Aware Minimization (SAM) Optimizers [81], we adopted Nesterov as the
optimizer in our pipeline. The initial learning rate was set to 0.003, which was updated
with a polynomial learning rate decay policy with a power of 0.8. All the free parameters
of the model were chosen based on trial and error. The code for this method, available at
https://github.com/agroimpacts/cnn-generalization-enhancement (accessed on 7 January
2024), will be regularly updated.

After completing the training phase, in which the model was trained using the samples
that were predominantly collected from 2018 imagery, without fine-tuning on samples
collected in subsequent years, we conducted a multi-faceted evaluation of the model’s
predictions for the years 2018–2022. We evaluated model performance for cropland map
production over a broad geographic region. To do so, we randomly selected 4 tiles of size
2358 × 2358 from the 5 years from different regions in the northern half of Ghana and
manually annotated the crop fields in the resulting 20 scenes, providing an independent

https://github.com/agroimpacts/cnn-generalization-enhancement
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test set equivalent in which each scene was equivalent in extent to nearly 111 contiguous
training/validation chips (see Appendix A, Figure A2). We evaluated the model predic-
tions using a selected set of performance metrics that we used to specifically assess the
degree to which input normalization, photometric augmentation, and dropout influence
temporal generalizability.

The metrics included precision, reflecting the model’s accuracy in identifying field
pixels; recall, measuring the ability to capture all actual field pixels; intersection over
union (IOU), assessing the overlap between predicted and actual field areas for boundary
accuracy; and F1-score, which harmonizes precision and recall, crucial for models dealing
with imbalanced classes.

We also evaluated the performance of the cropland classification model from the
spatio-temporal perspective. To achieve this, reference labels and model predictions from
each year were combined to generate 32 classes, each representing the binary state of a pixel
across all time points. A confusion matrix was created between the updated multi-temporal
labels, and metrics were extracted for each tile.

We further explored the spectral relationships between the average reflectance of FP
and FN pixels against the consistent cropland pixels over the whole temporal duration. A
pixel was labeled as persistent cropland if it was consistently classified as cropland across
all five years (2018–2022). The spatial confusion matrix categorized each pixel into one of
four possible groups: (1) pixels that were consistently classified as cropland in both the
reference and the prediction (TP); (2) pixels that were consistently classified as cropland
by the model but were classified as non-crop in the reference (model hallucination; FP);
(3) pixels that were classified as cropland in the reference but consistently missed by the
model (model omission; FN); and (4) pixels that were non-crop in both the reference and
the model predictions (TN). To investigate the spectral characteristics of classification errors,
the average reflectance of each category (TP, FP, FN, TN) was analyzed using multispectral
Planet imagery. For each tile and each year, pixels corresponding to TP, FP, FN, and TN
were extracted from the associated Planet imagery tile.

3. Results
3.1. Input Normalization

An examination of spectral band distributions across this dry season period is shown
in Figure 3, revealing a consistent mean within the visible (RGB) spectrum for the years
2019–2022, suggesting a relative constancy in the configuration of the major land cover
types, soil exposure levels, and additional surface attributes contributing to mean spectral
reflectance. The variability in the near-infrared (NIR) spectrum is likely attributable to inter-
annual fluctuations in soil moisture content. The notable divergence in the brightness value
distribution for the year 2018 is ascribed to variations in the data acquisition timing and
the difference in the initial preprocessing method employed. The fluctuations in standard
deviation highlight the underlying variability and complexity of the landscape, which could
be influenced by any combination of the drivers for temporal shift (e.g., seasonal effects,
soil moisture and atmospheric conditions, and the residual effects of vegetation dynamics)
and the intrinsic instability of radiometric calibration in the PlanetScope product [82].

In our experiments aimed at mitigating this domain shift, we found the choice of
input normalization substantially influenced the generalization capacity of the model.
Comparative analyses revealed that normalization techniques using min–max scaling with
“lab” and “gab” conventions yielded the best and second-best outcomes, respectively, for
the tested dataset. However, no singular normalization method consistently performed
best across varying temporal and geographical contexts (Table 1). Our evaluation also
showed that while all eight normalization techniques maintained the inter-band relational
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integrity (similar pairwise Pearson correlation coefficients), the “lab” and “gab” methods
additionally preserved the original brightness value distributions of the imagery, whereas
the “lpb” and “gpb” approaches were prone to generate more-pronounced extremes in the
data values (Figure 4).
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Table 1. Results of accuracy assessment on the field class using a small validation set consisting of
four tiles of size 2358 × 2358 pixels from 2018 to 2022 (twenty tiles in total) using the model trained
on samples from 2018. All hyperparameters are fixed except the input normalization strategy. The
best results are shown in bold, and the second-best results are underlined.

(a) Accuracy metric of field interior class using different normalization procedures over the multi-temporal
test dataset

Normalization type Precision Recall F1-score IoU

mm-lab 74.94% 50.01% 59.99% 42.84%

mm-lpb 63.89% 52.22% 57.47% 40.32%

mm-gab 71.60% 51.53% 59.93% 42.79%

mm-gpb 83.01% 41.32% 55.18% 38.10%

zv-lab 85.42% 38.84% 53.40% 36.42%

zv-lpb 77.33% 35.73% 48.87% 32.34%

zv-gab 50.78% 56.45% 53.47% 36.49%

zv-gpb 59.21% 53.96% 56.46% 39.33%

(b) Accuracy metric of the field interior class using different normalization procedures over the multi-temporal test
dataset, separated by year

Normalization
type 2018 2019 2020 2021 2022

mm-lab
IoU 51.77% 42.76% 34.02% 41.44% 44.15%

F1 68.22% 59.89% 50.77% 58.57% 61.26%

mm-lpb
IoU 49.65% 48.49% 32.06% 37.81% 36.16%

F1 66.36% 65.31% 48.55% 54.87% 53.12%

mm-gab
IoU 50.32% 44.08% 37.69% 44.33% 38.82%

F1 66.95% 61.19% 54.75% 61.43% 55.93%
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Table 1. Cont.

(b) Accuracy metric of the field interior class using different normalization procedures over the multi-temporal test
dataset, separated by year

mm-gpb
IoU 50.58% 34.15% 29.74% 39.29% 36.24%

F1 67.18% 50.91% 45.84% 56.41% 53.20%

zv-lab
IoU 48.99% 36.09% 22.38% 36.45% 36.68%

F1 65.76% 53.04% 36.58% 53.43% 53.67%

zv-lpb
IoU 46.98% 35.39% 17.38% 30.67% 31.18%

F1 63.93% 52.28% 29.61% 46.95% 47.54%

zv-gpb
IoU 48.44% 42.57% 31.20% 41.15% 36.56%

F1 65.26% 59.72% 47.56% 58.31% 53.54%

zv-gab
IoU 45.75% 36.68% 31.54% 35.91% 35.39%

F1 62.78% 53.67% 47.96% 52.85% 52.27%

(c) Accuracy metric for the field interior class using different normalization procedures over the multi-temporal test
dataset, separated by geography

Normalization
type

Tile 1
(id: 487103)

Tile 2
(id: 513911)

Tile 3
(id: 513254)

Tile 4
(id: 539416)

mm-lab
IoU 45.70% 46.56% 43.31% 36.37%

F1 62.73% 63.53% 60.44% 53.34%

mm-lpb
IoU 29.52% 47.61% 37.54% 37.04%

F1 45.59% 64.51% 54.59% 54.05%

mm-gab
IoU 39.92% 46.47% 39.58% 46.47%

F1 57.06% 63.45% 56.71% 63.45%

mm-gpb
IoU 40.44% 38.86% 36.73% 36.71%

F1 57.59% 55.97% 53.73% 53.70%

zv-lab
IoU 41.80% 35.36% 35.28% 35.36%

F1 58.96% 52.25% 52.16% 52.25%

zv-lpb
IoU 37.29% 28.10% 34.12% 28.10%

F1 54.32% 43.88% 50.88% 43.88%

zv-gpb
IoU 29.41% 45.68% 35.28% 37.45%

F1 45.45% 62.71% 52.15% 54.49%

zv-gab
IoU 27.08% 46.40% 36.90% 28.23%

F1 42.62% 63.39% 53.90% 44.02%

3.2. Investigating the Effects of Photometric Augmentation, MC-Dropout, Loss Function, and
Model Capacity on Model Performance

Through experimentation, we observed that increasing the capacity of a U-Net model
leads to improved performance. Notably, widening the model (increasing the number of
channels per layer) was more effective at enhancing capacity than increasing its depth
(adding more layers). However, we found that model performance plateaued at a capacity
of 79 M parameters, with further increases to 158 M parameters yielding negligible gains.
The non-regularized model with no dropout or photometric augmentation exhibited su-
perior performance in generating crop maps for the year 2018. However, it was unable
to accurately predict cropland distributions in subsequent years and had high rates of
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omission error across various regions. Incorporating photometric augmentation into the
model’s training regimen improved true-positive (TP) rates but also increased the number
of false positives (FP). Further integration of the dropout layers enhanced the model’s
generalization capabilities, effectively reducing the incidence of FP pixels, but in the ab-
sence of photometric augmentation, using dropout markedly elevated the false-negative
(FN) rate across all evaluated years. Notably, the application of MC-dropout emerged as
the most effective strategy, as evidenced by the empirical results presented in Table 2 and
Figure 5 (and Appendix A, Figures A3–A5), indicating a marked improvement in model
performance. Optimal results were achieved with a 0.15 training dropout rate and a 0.1
prediction dropout rate, with the number of MC trials set to 30. We also tried matching
the histogram of the subsequent years (2019–2022) with the training year (2018) as a test
phase augmentation with our best model, but this approach did not improve outcomes
(Tables 2 and 3). We found that TF loss performed better than CE loss on all the tests and
that calculating the class weights locally produced much lower FN compared to global
class weights for weighted loss calculations. However, lowering the capacity of the model
to half (e.g., 80 M trainable parameters) only slightly increased the number of FN pixels and
can be used if the computation resources are limited (Table 3 and Appendix A, Figure A6).

Table 2. Comparison of the effects of different combinations of photometric augmentation and
dropout on the mitigation of the temporal domain shift. The values in parentheses represent the
metrics before adaptive thresholding when probability scores are hardened with a fixed value of 75.
The best results are shown in bold, and the second-best results are underlined.

Experiment 2018 2019 2020 2021 2022 Across All
Years

No MC-dropout,
no photoaug.

IoU 51.71% 23.83% 11.73% 17.70% 23.42% 25.41%

F1 68.17% 38.49% 21.01% 30.08% 37.96% 40.52%

MC-dropout,
no photoaug.

IoU 53.38%
(44.71)

39.01%
(18.23)

24.78%
(8.12)

33.07%
(14.96)

41.09%
(18.82)

38.45%
(20.75)

F1 69.60%
(61.79)

56.12%
(30.84)

39.72%
(15.03)

49.70%
(26.03)

58.24%
(31.68)

55.54%
(34.37)

No MC-dropout,
photoaug.

IoU 54.39% 32.23% 28.11% 31.13% 33.29% 34.03%

F1 70.46% 48.75% 43.88% 47.48% 49.96% 50.79%

Only train dropout,
photoaug.

IoU 51.80% 41.52% 35.45% 39.61% 43.87% 42.33%

F1 68.25% 58.68% 52.35% 56.74% 60.98% 59.48%

Both MC-dropout,
photoaug.

IoU 51.77%
(50.26)

42.76%
(36.08)

34.02%
(25.70)

41.41%
(32.72)

44.15%
(40.0)

42.84%
(36.97)

F1 68.22%
(66.89)

59.89%
(53.02)

50.77%
(40.90)

58.57%
(49.31)

61.26%
(57.1)

59.99%
(53.98)

Both MC-dropout
(conventional),

photoaug.

IoU 53.39% 34.03% 24.46% 32.87% 39.80% 36.65%

F1 69.62% 50.78% 39.31% 49.48% 56.94% 53.64%

The most substantial distinction was in the probability maps generated by the two
dropout approaches, where the conventional method was overconfident in its predictions
and had a much smaller range for the probability of the positive class (see Appendix A,
Figure A7). However, when using the optimal hardening threshold, spatial dropout
was more effective in reducing the incidence of false positives (FP) relative to traditional
dropout layers. We found the optimal hardening threshold by comparing the field vs
non-field histogram against the model output probabilities. Furthermore, we found that the
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normalization procedure also significantly influenced the model’s prediction confidence.
Specifically, prediction scores generated from the mm-lab normalization and spatial MC-
dropout had the widest range of probability values, providing valuable information that
can help guide efforts to improve the training dataset. This feature is in addition to the
utility of other layers, such as variation and mutual information, derived from the Monte
Carlo trials.
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and photometric augmentation for a sample prediction tile (487103) through the years 2018 to 2022.

Table 3. Comparison of the effects of model capacity, loss function, and histogram matching against
the best model with all augmentations, TF loss, and MC-dropout (both MC-dropout, photoaug.). All
hyperparameters except the property under study are the same across experiments.

Experiments Precision Recall F1-Score IoU

Best model 74.94% 50.01% 59.99% 42.84%

Half capacity (width) 75.73% 48.88% 59.41% 42.26%

TFL + global weight 81.80% 32.49% 46.51% 30.30%

CE + local weight 67.88% 26.33% 37.94% 23.41%

Histogram matching 58.47% 55.13% 56.75% 39.62%

3.3. Investigating the Spatio-Temporal Consistency

For spatio-temporal consistency, we report results for the two most reliable annotations—
the consistently crop and consistently non-crop pixels—as well as the average metrics
for all 32 classes (Table 4). To aid in visualization, the thirty-two temporal combination
classes were aggregated into six parent classes: two for persistently non-crop (0 years) and
persistently crop (5 years), and four for pixels classified as crop for exactly 1, 2, or 3 of
the 4 years. Figure 6 illustrates the substantial improvement in segmentation consistency
achieved by the best-performing model (with photometric augmentations and MC-dropout)
compared to the same model without these components. The quantitative analysis in Table 4
further highlights this improvement, showing at least a twofold increase in the IoU score.
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Table 4. Results from comparing model 1 (with photometric augmentation + MC-dropout) and
model 2 (without photometric augmentation or MC-dropout) against the multi-temporal reference
annotation, reported for each tile ID and overall.

Tile ID Model Category Precision Recall F1-Score IoU

487103

With
MC-dropout,

photoaug.

Persistent crop 87.69% 29.26% 43.87% 28.10%

Persistent non-crop 93.82% 96.75% 95.26% 90.95%

All categories and their
subcategories 23.63% 17.18% 19% 12.05%

W/O
MC-dropout,

photoaug.

Persistent crop 93.59% 11.69% 20.78% 11.60%

Persistent non-crop 91.50% 99.58% 95.37% 91.14%

All categories and their
subcategories 15.76% 7.09% 9.87% 5.93%

513254

With
MC-dropout,

photoaug.

Persistent crop 81.39% 21.95% 34.58% 20.90%

Persistent non-crop 89.51% 97.43% 93.30% 87.45%

All categories and their
subcategories 19.22% 13.89% 14.62% 9.18%

W/O
MC-dropout,

photoaug.

Persistent crop 0 0 0 0

Persistent non-crop 85.30% 99.76% 91.97% 85.13%

All categories and their
subcategories 11.45% 5.23% 9.32% 3.39%

513911

With
MC-dropout,

photoaug.

Persistent crop 79.53% 17.62% 28.84% 16.85%

Persistent non-crop 63.35% 94.76% 75.93% 61.20%

All categories and their
subcategories 29.98% 18.68% 21.23% 12.55%

W/O
MC-dropout,

photoaug.

Persistent crop 89.35% 3.01% 5.82% 3%

Persistent non-crop 51.45% 96.41% 67.09% 50.48%

All categories and their
subcategories 22.64% 6.79% 6.62% 3.83%

539416

With
MC-dropout,

photoaug.

Persistent crop 72.65% 15.52% 25.57% 14.66%

Persistent non-crop 82.08% 81.75% 81.92% 69.38%

All categories and their
subcategories 17.5% 13.20% 13.14% 7.91%

W/O
MC-dropout,

photoaug.

Persistent crop 63.62% 19.97% 30.40% 17.93%

Persistent non-crop 79.21% 60.57% 68.65% 52.26%

All categories and their
subcategories 17.47% 13.82% 13.47% 7.78%

Overall

With
MC-dropout,

photoaug.

Persistent crop 79.85% 19.72% 31.63% 18.78%

Persistent non-crop 84.17% 93.06% 88.39% 79.20%

All categories and their
subcategories 24.21% 16.92% 18.67% 11.30%

W/O
MC-dropout,

photoaug.

Persistent crop 70.25% 8.17% 14.63% 7.89%

Persistent non-crop 78.35% 89.81% 83.96% 71.95%

All categories and their
subcategories 17.18% 8.75% 9.31% 5.78%
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Figure 6. Showing the spatio-temporal consistency of model 1 (both MC-dropout and photometric
augmentation) and model 2 (without MC-dropout or photometric augmentation) against the muti-
temporal reference annotations.

We compared the relationship between average pixel reflectance and accuracy cate-
gories regarding the consistently crop category. The results are visualized as a 4 × 4 grid of
bar plots, where each row corresponds to a specific region (tile) and each column represents
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one of the four spectral bands (Blue, Green, Red, NIR). Within each plot, the bars show
the average reflectance values for each year (2018–2022), grouped into the four accuracy
categories. Each plot reveals how the spectral characteristics of cropland and non-cropland
pixels differ across years, accuracy categories, and spectral bands. The structure enables
comparison between correct classifications (TP, TN) and model errors (FP, FN), investigating
the spectral patterns to shed light on the model’s performance and limitations.

Figure 7 shows that across all years, tiles, and bands, field pixels (TP: correctly classified
field, FN: missed field) and FP pixels (non-field misclassified as field) are consistently
brighter than non-field pixels (TN), particularly in the NIR and Red bands. The higher
reflectance of FP pixels compared to TN highlights that the model struggles with non-field
bright objects that share similar spectral and probably shape characteristics with field pixels.
FN pixels (consistently missed field) generally exhibit slightly lower reflectance values than
TP (consistently correctly classified field), but in some years and bands, the FN and TP
values are very close, suggesting that FN pixels retain cropland spectral properties but are
still misclassified.
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4. Discussion
Our experimental findings regarding normalization techniques present an interesting

contrast to the existing literature. While previous studies [83–85] advocated for band-
specific normalization approaches, our results with the Ghana cropland dataset demon-
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strated superior performance using min–max scaling with “lab” and “gab”. While all
conventions maintained inter-band relational integrity, these two also preserved the origi-
nal brightness value distributions of the imagery, whereas the band-specific approaches
(“lpb” and “gpb”) tended to generate more-pronounced extremes in the data values. How-
ever, no single normalization method consistently performed best across all temporal and
geographical contexts, suggesting the need for context-specific optimizations. This finding
highlights the challenge of temporal domain adaptation in remote sensing, where varying
atmospheric conditions, seasonal effects, and sensor calibration issues can influence the
effectiveness of different normalization strategies [47,86,87]. One limitation of our current
study is that we did not investigate the impact of normalizing using image statistics drawn
from the entire time interval, which could potentially provide more-robust normalization
parameters for temporal generalization. This approach, along with a systematic investi-
gation of normalization effectiveness across different geographical regions and temporal
scales, represents an important direction for future research to establish more general
guidelines for normalization in multi-temporal crop-mapping applications.

While conventional wisdom in DL often advocates for increased model capacity
through deeper or wider networks, our findings suggest that such modifications yield
negligible performance gains in our specific experimental context: using the U-Net archi-
tecture on the Ghana cropland dataset. We found that reducing the model capacity to 79 M
parameters had minimal impact on mapping performance, showing the potential to reduce
computational expense. The choice of loss function and class weighting schemes played
an important role in influencing prediction accuracy, as has also been shown in numerous
other studies [88–90]. Specifically, the TF loss function consistently outperformed CE loss,
and local class weight calculations proved superior to global weighting approaches across
our experiments. These findings suggest that practitioners working with similar remote
sensing tasks might benefit from prioritizing the exploration of training framework com-
ponents, such as loss formulations and weighting strategies, rather than focusing solely
on scaling up model architecture through increasing either the model’s depth or its width.
This insight is particularly relevant for operational systems where computational efficiency
and model deployability are important considerations, though further research would be
needed to validate these findings across different architectural families and datasets.

Our experiments demonstrated the effectiveness of MC-dropout in improving model
generalization for multi-temporal crop mapping, aligning with theoretical expectations
about uncertainty quantification in deep learning [65,91–94]. The implementation of MC-
dropout with a 0.15 training rate and a 0.1 prediction rate, combined with 30 MC trials,
showed marked improvements in model performance compared to using dropout only
during training. Notably, spatial dropout proved more effective at reducing false positives
compared to traditional dropout layers, though it generated probability maps with substan-
tially higher variation in confidence levels. This increased variation presents challenges
for determining optimal hardening thresholds, as we observed significant fluctuations in
threshold values across both different tiles and years, which hinders the usage of spatial
MC-dropout in large-scale mapping. The spatio-temporal consistency analysis also showed
that our methodology substantially improved temporal generalizability, but the low metric
values suggest that the improvements are insufficient to fully capture inter-annual cropland
dynamics. To overcome this limitation, one strategy would be to fine-tune the model for
several epochs on a small labeled dataset for the prediction year. We also need to better
understand the reason behind the omission error. Our evaluation of the spectral charac-
teristics of consistently missed or hallucinated crop pixels suggests that omission error
cannot be reliably explained by spectral reflectance alone, and spatial context also needs
to be considered to understand the model’s decision-making process, which is a further
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directive. This is also an expected behavior, as the photometric augmentations are specif-
ically designed to reduce the model’s reliance on pixel-level reflectance, but at the same
time makes it harder to explain the impact of input normalization on model performance.

The interaction between dropout and photometric augmentation revealed complex
trade-offs in model regularization. While photometric augmentation improved true--
positive rates, it also led to an increase in the incidence of false positives. This trade-off
was partially mitigated through the integration of dropout layers, which enhanced the
model’s generalization capabilities. Interestingly, our attempts to address temporal domain
shift through histogram matching, where we aligned the histograms of subsequent years
(2019–2022) with that of the training year (2018), proved less effective than photometric
augmentation. This unexpected result might be attributed to several factors: first, histogram
matching operates globally on the image level, potentially overlooking local contextual
variations that are crucial for crop identification; second, the complex nature of temporal
changes in agricultural landscapes might not be adequately captured by simple histogram
alignment; third, photometric augmentation’s ability to simulate a wider range of potential
image variations might better prepare the model for handling real-world temporal shifts.

Looking forward, several promising directions emerge for enhancing temporal gener-
alization in crop mapping. While our current implementation focused on basic photometric
augmentation, more–sophisticated approaches such as CutMix [95] and Mixup [96] warrant
investigation. These methods, which create hybrid training samples by combining different
images or image regions, could potentially help the model learn more-robust features
across temporal domains. Additionally, exploring adaptive threshold selection methods
that account for temporal and spatial variations in prediction confidence could address the
challenges posed by spatial dropout’s wider probability distributions.

5. Conclusions
This work demonstrates that careful choice of pre-processing (e.g., input normaliza-

tion and image augmentations) and tuning the capacity of the model accompanied by
dropout regularization in both the training and prediction phases significantly improves
the generalization power of the model and its capability for temporal generalization. This
capability enabled a model trained primarily on samples for a single year, with imagery of
a different provenance, to make high-resolution, multi-year maps of field boundaries in
smallholder-dominated croplands at national scales, an important requirement for agricul-
tural monitoring. Although the resulting maps still have some notable omission errors in
each year, these errors were substantially reduced by the techniques used here, and more
closely captured the inter-annual distribution of crop fields. The remaining errors may be
further reduced by fine-tuning with a small number of labels collected for each year [15],
targeted using the uncertainty information provided by the MC trials, with the possibility
of auto-generating labels from regions with low prediction uncertainty.
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